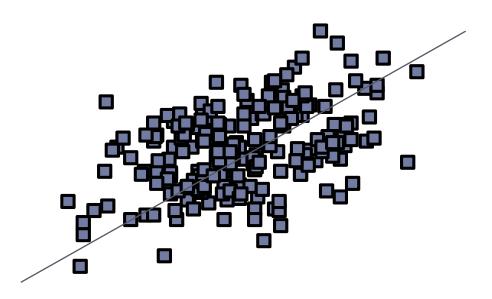


Module 8: Linear Regression

The Applied Research Center

Module 8 Overview

- Purpose of Linear Regression
- Scatter Diagrams
- Regression Equation
- Regression Results
- Example


Purpose

- To predict scores on one variable based on information regarding the other variables.
-) OR
- To explain why the participants scored differently on a particular variable of interest.

Scatter Diagrams

Regression can best be understood by examining a scatter diagram, which includes the data points and a line of best fit.

Regression Equation

- The slanted line passing through the data points of a scatter diagram is the regression line or line of best fit, which is used to make predictions.
- The regression equation is the technical way of describing the regression line.
 - ▶ Y' = a + bX
 - > Y' is the predicted score for the dependent variable
 - *a* is the constant
 - b is the regression coefficient
 - X is the known score on the independent variable

Y' = a + bX

• *a* is the constant, or **intercept**

- Indicates where the regression line would intersect the y axis (or the vertical axis, also known as the ordinate).
- It is the value for Y' when X = 0
- b is the regression coefficient, or the slope of the regression line
 - It signifies how many predicted units of change (either positive or negative) in the DV there are for any one unit increase in the IV.

Regression Results

▶ r

the degree to which the predicted scores match up to the actual scores.

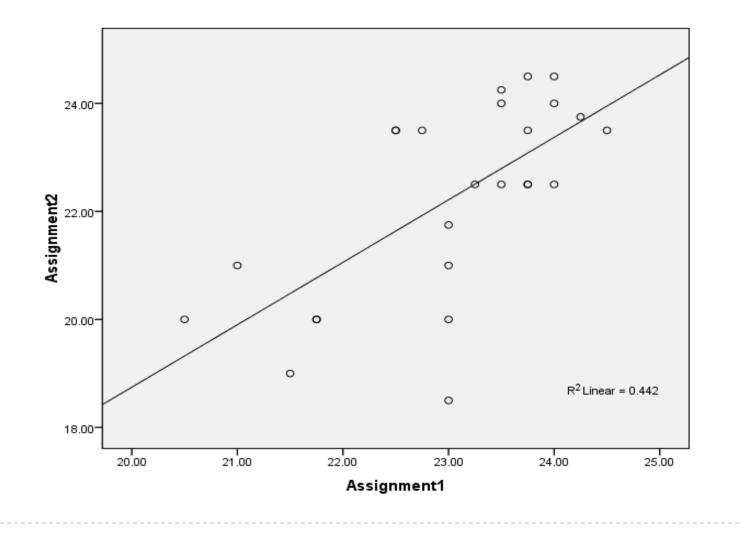
▶ *r*²

- Coefficient of determination
- The proportion of variability in the dependent variable that is explained by the independent variable
- Reported as a percent

Example

- A stats professor wanted to predict student grades on Assignment 2 based on student grades on Assignment 1.
- Step I:Write your null and alternate hypotheses:
 - H₀ = There is no relationship between Assignment I and Assignment 2.
 - H_a = There is a relationship between Assignment 1 and Assignment 2.

- Step 2: Input the data into SPSS
 - Create a variable for Assignment I and a second variable for Assignment 2
 - Input the student grades on Assignment 1 in the Assignment 1 column and enter student grades on Assignment 2 in the Assignment 2 column



- Step 3: Create a scatter diagram
 - Graphs \rightarrow Legacy Dialogues \rightarrow Scatter/Dot
 - Click on Simple Scatter, then Define
 - Assignment $2 \rightarrow Y$ -axis box
 - Assignment $I \rightarrow X$ -axis box
 - Click Ok

- To add a regression line to the scatter plot
 - Double click on the chart (in the SPSS Output) to select it for editing and maximize the chart editor
 - Click on any of the data points in the scatter plot to highlight the data points
 - Click Elements from the main menu bar and click on Fit
 Line at Total
 - Click Close

Step 4: Run the Bivariate Linear Regression

- Analyze \rightarrow Regression \rightarrow Linear
- Assignment 2 \rightarrow **Dependent** box
- Assignment I \rightarrow Independent box
- Click Statistics
- Click Confidence Intervals and Descriptives (make sure Estimates and Model fit are also selected)
- Click Continue
- Click OK

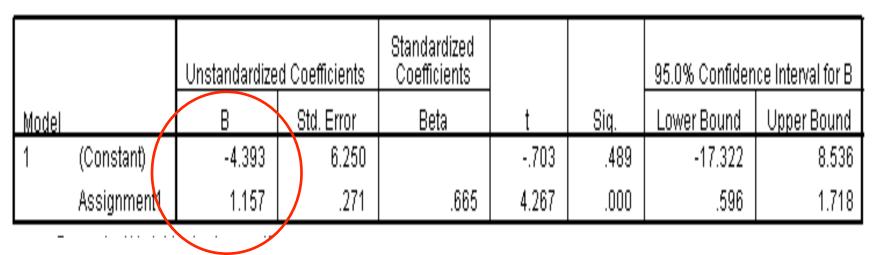
Þ

Descriptive Statistics

	Mean	Std. Deviation	N
Assignment2	22.2500	1.81286	25
Assignment1	23.0300	1.04163	25

Correlations

		Assignment2	Assignment1	
Pearson Correlation	Assignment2	1.000	.665	
	Assignment1	.665	1.000	
Sig. (1-tailed)	Assignment2		.000	
	Assignment1	.000		
N	Assignment2	25	25	ſ
	Assignment1	25	25	


Model Summary

Model R	R Square	Adjusted R Square	Std. Error of the Estimate
1 .665ª	.442	.418	1.38351

ANOVA^b

	lodel	Sum of Squares	df	Mean Square	F	Siq.	
1	Regression	34.851	1	34.851	18.207	.000ª	\square
	Residual	44.024	23	1.914			
	Total	78.875	24				

Coefficients^a

Step 5:Write the prediction equation

- Y' = −4.39 + 1.16X
- Step 6:Write up your results
- The hypothesis was tested using a bivariate linear regression to determine whether student grades on Assignment 2 could be predicted based on student grades from Assignment 1. Regression analysis revealed that the model significantly predicted Assignment 2 grades based on Assignment 1 grades, F (1, 23) = 18.207, p < .001. R² for the model was .44, and adjusted R² was .42

Module 8 Summary

- Purpose of Linear Regression
- Scatter Diagrams
- Regression Equation
- Regression Results
- Example

Review Activity

- Please complete the review activity at the end of the module.
- All modules build on one another. Therefore, in order to move onto the next module you must successfully complete the review activity before moving on to next module.
- You can complete the review activity and module as many times as you like.

Upcoming Modules

- Module I: Introduction to Statistics
- Module 2: Introduction to SPSS
- Module 3: Descriptive Statistics
- Module 4: Inferential Statistics
- Module 5: Correlation
- Module 6: t-Tests
- Module 7: ANOVAs
- Module 8: Linear Regression
- Module 9: Nonparametric Procedures

